2,939 research outputs found

    Superconducting Superstructure for the TESLA Collider

    Get PDF
    We discuss the new layout of a cavity chain (superstructure) allowing, we hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. We present mainly computations we have performed up to now and which encouraged us to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page

    Hydrogen vs. Battery in the long-term operation. A comparative between energy management strategies for hybrid renewable microgrids

    Get PDF
    The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time, the use of renewable energy sources is pursued to address decarbonization targets, but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing, at the same time, the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense, the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However, hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation, demand and storage, energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load, storage efficiency, operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy, while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation

    Characterization of plasma accelerators with RF linac terminology

    Get PDF
    Abstract The physics of plasma acceleration is described by using RF linac terminology such as shunt impedance, filling time, transit time factor, etc. It is shown that some differences between conventional RF accelerators and plasma accelerators make it difficult to import the RF linac terminology directly into the new field. For example, the shunt impedance is of limited use and the filling time is no use in wake-field accelerators with single-drive beams or single-pump pulses. The beatwave accelerator, a driven oscillator system, has in a sense more similarity to RF linacs than wake-field accelerators. It was shown that plasma wave decay due to collisions and modulational instability seriously deteriorate the quality factor

    Plasma boosted electron beams for driving Free Electron Lasers

    Full text link
    In this paper, we report results of simulations, in the framework of both EuPRAXIA \cite{Walk2017} and EuPRAXIA@SPARC\_LAB \cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employing a plasma post acceleration scheme. The boosting plasma wave is driven by a tens of \SI{}{\tera\watt} class laser and doubles the energy of an externally injected beam up to \GeV{1}. The injected bunch is simulated starting from a photoinjector, matched to plasma, boosted and finally matched to an undulator, where its ability to produce FEL radiation is verified to yield O(\num{e11}) photons per shot at \nm{2.7}.Comment: 5 pages, 2 figure

    V405 Aurigae: A High Magnetic Field Intermediate Polar

    Full text link
    Our simultaneous multicolor (UBVRI) circular polarimetry has revealed nearly sinusoidal variation over the WD spin cycle, and almost symmetric positive and negative polarization excursions. Maximum amplitudes are observed in the B and V bands (+-3 %). This is the first time that polarization peaking in the blue has been discovered in an IP, and suggests that V405 Aur is the highest magnetic field IP found so far. The polarized flux spectrum is similar to those found in polars with magnetic fields in the range B ~ 25-50 MG. Our low resolution circular spectropolarimetry has given evidence of transient features which can be fitted by cyclotron harmonics n = 6, 7, and 8, at a field of B = 31.5 +- 0.8 MG, consistent with the broad-band polarized flux spectrum. Timings of the circular polarization zero crossovers put strict upper limits on WD spin period changes and indicate that the WD in V405 Aur is currently accreting closely at the spin equilibrium rate, with very long synchronization timescales, T_s > 10^9 yr. For the observed spin to orbital period ratio, P_{spin}/P_{orb} = 0.0365, and P_{orb} ~ 4.15 hr, existing numerical accretion models predict spin equilibrium condition with B ~ 30 MG if the mass ratio of the binary components is q_1 ~ 0.4. The high magnetic field makes V405 Aur a likely candidate as a progenitor of a polar.Comment: To appear in The Astrophysical Journal, September 1 Issue (2008), 9 pages, 10 figure

    Phase-resolved far-ultraviolet HST spectroscopy of the peculiar magnetic white dwarf RE J0317-853

    Get PDF
    We present phase resolved FUV HST FOS spectra of the rapidly rotating, highly magnetic white dwarf RE J0317-853. Using these data, we construct a new model for the magnetic field morphology across the stellar surface. From an expansion into spherical harmonics, we find the range of magnetic field strengths present is 180-800MG. For the first time we could identify an absorption feature present at certain phases at 1160A as a ``forbidden'' 1s_0 -> 2s_0 component, due to the combined presence of an electric and magnetic field.Comment: 15 pages including 4 figures. Accepted for publication in ApJ Letter

    Earthquake-triggered landslides and Environmental Seismic Intensity: insights from the 2018 Papua New Guinea earthquake (Mw 7.5)

    Get PDF
    On the 25 February 2018, an earthquake of magnitude M(w)7.5 struck the region of Porgera in Papua New Guinea (PNG), triggering numerous landslides. Planetscope images are used to derive a partial inventory of 2941 landslides in a cloud-free area of 2686 km(2). The average area of landslides in the study area is 18,500 m(2). We use the Environmental Seismic Intensity (ESI) scale to assess the damage due to the triggered landslides. Local intensity values are assigned to individual landslides by calculating their volume using various area-volume relations. We observe that different empirical relations yield similar volume values for individual landslides (local ESI intensity & GE; X). The spatial variation of landslide density and areal coverage within the study area in cells of 1 km(2) is investigated and compared to the probability predicted by the USGS model. We observe that high probability corresponds to a significant number of landslides. An ESI epicentral intensity of XI is estimated based on primary and secondary effects. This study represents the first application of the ESI scale to an earthquake in PNG. The Porgera earthquake fits well with past case studies worldwide in terms of ESI scale epicentral intensity and triggered landslide number as a function of earthquake magnitude
    • …
    corecore